45/58.458 - 33/3 = ? Scăderea fracțiilor ordinare, calculator online, cum se face operația de scădere explicat pas cu pas. Răspunsul, scris în patru moduri. Ca fracție supraunitară (improprie) negativă (numărătorul >= numitorul). Ca fracție mixtă. Ca număr zecimal. Ca procentaj.

45/58.458 - 33/3 = ?

Simplificăm operația

Simplificăm fracțiile la forma echivalentă cea mai simplă, ireductibilă:

Pentru a simplifica de tot o fracție, la forma echivalentă cea mai simplă: împarte numărătorul și numitorul la cel mai mare divizor comun al lor, CMMDC.


* De ce încercăm să simplificam fracțiile?


Prin scăderea valorilor numărătorilor și numitorilor fracțiilor calculele sunt mai ușor de efectuat.


O fracție complet simplificată este una cu cel mai mic numărător și numitor posibil, una care nu mai poate fi simplificată și se numește fracție ireductibilă.

* * *

Fracția: 45/58.458 = (32 × 5)/(2 × 3 × 9.743) = ((32 × 5) : 3)/((2 × 3 × 9.743) : 3) = 15/19.486


Fracția: - 33/3 = - (3 × 11)/3 = - ((3 × 11) : 3)/(3 : 3) = - 11/1 = - 11



Rescriem operația simplificată echivalentă:

45/58.458 - 33/3 =


15/19.486 - 11 =


- 11 + 15/19.486

Rescrie rezultatul intermediar

Ca fracție supraunitară (improprie) negativă:
(numărătorul >= numitorul)

O fracție supraunitară: valoarea numărătorului este mai mare decât sau egală cu valoarea numitorului.


- 11 + 15/19.486 =


( - 11 × 19.486)/19.486 + 15/19.486 =


( - 11 × 19.486 + 15)/19.486 =


- 214.331/19.486

Ca fracție mixtă (numit și număr mixt):

O fracție mixtă: un număr întreg și o fracție subunitară, ambele având același semn.


O fracție subunitară: valoarea numărătorului este mai mică decât valoarea numitorului.


Împarte numărătorul la numitor și notează câtul și restul împărțirii, așa cum se vede mai jos:


- 214.331 : 19.486 = - 10 și restul = - 19.471 ⇒


- 214.331 = - 10 × 19.486 - 19.471 ⇒


- 214.331/19.486 =


( - 10 × 19.486 - 19.471)/19.486 =


( - 10 × 19.486)/19.486 - 19.471/19.486 =


- 10 - 19.471/19.486 =


- 10 19.471/19.486

Ca număr zecimal:

Pur și simplu împarte numărătorul la numitor, fără rest, după cum se vede mai jos:


- 10 - 19.471/19.486 =


- 10 - 19.471 : 19.486 ≈


- 10,999230216566 ≈


- 11

Ca procentaj:

O valoare procentuală p% este egală cu fracția: p/100, pentru orice număr zecimal p. Trebuie așadar să schimbăm forma numărului obținut mai sus, pentru a avea un numitor de 100.


Pentru a face asta, înmulțim numărul cu fracția 100/100.


Valoarea fracției 100/100 = 1, deci înmulțind numărul cu această fracție rezultatul nu se schimbă, ci doar forma.


- 10,999230216566 =


- 10,999230216566 × 100/100 =


( - 10,999230216566 × 100)/100 =


- 1.099,923021656574/100 =


- 1.099,923021656574% ≈


- 1.099,92%



Răspuns final:
:: scris în patru moduri ::

Ca fracție supraunitară (improprie) negativă:
(numărătorul >= numitorul)
45/58.458 - 33/3 = - 214.331/19.486

Ca fracție mixtă (numit și număr mixt):
45/58.458 - 33/3 = - 10 19.471/19.486

Ca număr zecimal:
45/58.458 - 33/3 ≈ - 11

Ca procentaj:
45/58.458 - 33/3 ≈ - 1.099,92%

Cum sunt scrise numerele pe site-ul nostru web: punctul '.' e folosit ca separator de mii; virgula ',' e folosită ca separator zecimal; numerele sunt rotunjite la maximum 12 zecimale (dacă e cazul). Setul de simboluri utilizate pe site-ul nostru: / linia fracției; : împărțire; × înmulțire; + plus (adunarea); - minus (scăderea); = egal; ≈ aproximativ egal.

Mai multe operații de acest fel:

Cum se scad fracțiile ordinare:
50/58.465 - 38/9

Scade fracții ordinare, calculator online:

Cele mai recente operații de scădere a fracțiilor

Teorie și exemplu practic, explicat: scăderea fracțiilor - cum se scad fracțiile ordinare?

Există două cazuri referitor la numitori atunci cănd scădem fracții ordinare:

  • A. fracțiile au numitori egali;
  • B. fracțiile au numitori diferiți.

A. Cum se scad fracții ordinare care au același numitor?

  • Scade pur și simplu numărătorii fracțiilor.
  • Numitorul fracției rezultate va fi chiar numitorul comun al fracțiilor.
  • Simplifică fracția rezultată.

Un exemplu de scădere de fracții care au numitori egali, cu explicații

  • 3/18 + 4/18 - 5/18 = (3 + 4 - 5)/18 = 2/18;

  • Am scăzut pur și simplu numărătorii fracțiilor: 3 + 4 - 5 = 2;
  • Numitorul fracției rezultate este: 18;
  • Se simplifică fracția rezultată: 2/18 = (2 : 2)/(18 : 2) = 1/9.

  • Cum se simplifică fracția ordinară 2/18

B. Pentru a scădea fracții care au numitori diferiți, fracțiile trebuie aduse la același numitor. Cum se face?

  • 1. Simplifică fracțiile la forma echivalentă cea mai simplă:

  • 2. Calculează cel mai mic multiplu comun, CMMMC, al noilor numitori ai fracțiilor simplificate:

    • CMMMC va fi numitorul comun al fracțiilor adunate.
    • Descompune în factori primi toți noii numitorii ai fracțiilor simplificate.
    • Cel mai mic multiplu comun CMMMC se obține înmulțind toți factorii primi unici ce apar în descompunerea numitorilor înmulțiți la puterile cele mai mari.
    • Calculează online cel mai mic multiplu comun, CMMMC.

  • 3. Calculează factorul de amplificare al fiecărei fracții:

    • Factorul de amplificare este un număr natural diferit de zero care va fi folosit pentru a multiplica atât numărătorul cât și numitorul fiecărei fracții în parte, pentru a aduce toate fracțiile la același numitor comun.
    • Împarte cel mai mic multiplu comun CMMMC calculat la punctul anterior, la numitorul fiecărei fracții în parte, obținându-se astfel câte un număr pentru fiecare fracție în parte, numit "factorul de amplificare".
  • 4. Amplifică fiecare fracție:

    • Înmulțește atât numărătorul cât și numitorul fiecărei fracții cu "factorul de amplificare".
    • După amplificare, fracțiile sunt aduse la același numitor.
  • 5. Scade fracțiile:

    • Pentru a scădea fracțiile scade numărătorii tuturor fracțiilor.
    • Numitorul fracției rezultate va fi egal cu numitorul comun al fracțiilor adunate, adică cel mai mic multiplu comun al numitorilor, calculat mai sus.
  • 6. Simplifică fracția rezultată, dacă e nevoie.


Citește restul articolului, aici > Cum se scad fracțiile ordinare

Mai multe despre fracțiile ordinare / teorie: