Compară cele două fracții ordinare 3/63 și 10/72, care e mai mare? Calculator online

Fracțiile 3/63 și 10/72 sunt comparate prin construirea de fracții echivalente, care au fie numitori egali, fie număratori egali

Pentru a compara și sorta mai multe fracții, acestea trebuie să aibă fie același numitor fie același numărător.

Operația de comparare a fracțiilor:
3/63 și 10/72

Simplificăm operația
Simplificăm fracțiile la forma echivalentă cea mai simplă, ireductibilă:

Pentru a simplifica de tot o fracție, la forma echivalentă cea mai simplă: împarte numărătorul și numitorul la cel mai mare divizor comun al lor, CMMDC.


Link intern » Simplifică fracții complet, la forma echivalentă cea mai simplă, ireductibilă (cel mai mic numărător și numitor posibil), calculator online



3/63 = 3/(32 × 7) = (3 : 3)/((32 × 7) : 3) = 1/21


10/72 = (2 × 5)/(23 × 32) = ((2 × 5) : 2)/((23 × 32) : 2) = 5/36

Pentru a compara și sorta fracțiile, le aducem la același numărător.

Amplificăm fracția care are 1 ca numărător.


Înmulțim numărătorul și numitorul cu același număr:


1/21 = (5 × 1)/(5 × 21) = 5/105


Fracțiile au același numărător, comparați-le numitorii.

Cu cât numitorul este mai mare, cu atât fracția pozitivă este mai mică.


Cu cât numitorul este mai mare, cu atât fracția negativă este mai mare.


::: Operația de comparare a fracțiilor :::
Răspuns final:

Fracțiile sortate în ordine crescătoare:
5/105 < 5/36

Fracțiile inițiale sortate în ordine crescătoare:
3/63 < 10/72

Cum sunt scrise numerele pe site-ul nostru web: punctul '.' e folosit ca separator de mii; virgula ',' e folosită ca separator zecimal; numerele sunt rotunjite la maximum 12 zecimale (dacă e cazul). Setul de simboluri utilizate pe site-ul nostru: / linia fracției; : împărțire; × înmulțire; + plus (adunarea); - minus (scăderea); = egal; ≈ aproximativ egal.

Compară și sortează fracții ordinare, calculator online:

Teorie: compararea fracțiilor ordinare

Cum se compară două fracții?

1. Fracții de semn diferit:

  • Orice fracție pozitivă e mai mare decât orice fracție negativă:
  • ex: 4/25 > - 19/2

2. O fracție subunitară, alta supraunitară:

  • Orice fracție pozitivă supraunitară e mai mare decăt orice fracție pozitivă echiunitară, care la rândul ei e mai mare decât orice fracție pozitivă subunitară:
  • ex: 44/25 > 1 > 19/200
  • Orice fracție negativă supraunitară e mai mică decăt orice fracție negativă echiunitară, care la rândul ei e mai mică decât orice fracție negativă subunitară:
  • ex: - 44/25 < -1 < - 19/200

3. Fracții cu numărători egali dar și cu numitori egali:

  • Fracțiile sunt egale:
  • ex: 89/50 = 89/50

4. Fracții cu numărători diferiți dar cu numitori egali:

  • Fracții pozitive: se compară numărătorii, fracția mai mare e cea care are numărătorul mai mare:
  • ex: 74/25 > 49/25
  • Fracții negative: se compară numărătorii, fracția mai mare e cea care are numărătorul mai mic:
  • ex: - 19/25 < - 17/25

5. Fracții cu numitori diferiți dar numărători egali

  • Fracții pozitive: se compară numitorii, fracția mai mare e cea care are numitorul mai mic:
  • ex: 24/25 > 24/26
  • Fracții negative: se compară numitorii, fracția mai mare este cea care are numitorul mai mare:
  • ex: - 17/25 < - 17/29

6. Fracții cu numitori și numărători diferiți

Mai multe despre fracțiile ordinare / teorie: